End-to-end Convolutional Network for Saliency Prediction
نویسندگان
چکیده
The prediction of saliency areas in images has been traditionally addressed with hand crafted features based on neuroscience principles. This paper however addreses the problem with a completely data-driven approach by training a convolutional network. The learning process is formulated as a minimization of a loss function that measures the Euclidean distance of the predicted saliency map with the provided ground truth. The recent publication of large datasets of saliency prediction has provided enough data to train a not very deep architecture which is both fast and accurate. The convolutional network in this paper, named JuntingNet, won the LSUN 2015 challenge on saliency prediction with a superior performance in all considered metrics.
منابع مشابه
SalNet360: Saliency Maps for omni-directional images with CNN
The prediction of Visual Attention data from any kind of media is of valuable use to content creators and used to efficiently drive encoding algorithms. With the current trend in the Virtual Reality (VR) field, adapting known techniques to this new kind of media is starting to gain momentum. In this paper, we present an architectural extension to any Convolutional Neural Network (CNN) to fine-t...
متن کاملVisual Saliency Prediction Using a Mixture of Deep Neural Networks
Visual saliency models have recently begun to incorporate deep learning to achieve predictive capacity much greater than previous unsupervised methods. However, most existing models predict saliency using local mechanisms limited to the receptive field of the network. We propose a model that incorporates global scene semantic information in addition to local information gathered by a convolutio...
متن کاملA Fast and Compact Saliency Score Regression Network Based on Fully Convolutional Network
Visual saliency detection aims at identifying the most visually distinctive parts in an image, and serves as a pre-processing step for a variety of computer vision and image processing tasks. To this end, the saliency detection procedure must be as fast and compact as possible and optimally processes input images in a real time manner. It is an essential application requirement for the saliency...
متن کاملLearning Document Image Features With SqueezeNet Convolutional Neural Network
The classification of various document images is considered an important step towards building a modern digital library or office automation system. Convolutional Neural Network (CNN) classifiers trained with backpropagation are considered to be the current state of the art model for this task. However, there are two major drawbacks for these classifiers: the huge computational power demand for...
متن کاملA Deep Spatial Contextual Long-term Recurrent Convolutional Network for Saliency Detection
—Traditional saliency models usually adopt hand-crafted image features and human-designed mechanisms to calculate local or global contrast. In this paper, we propose a novel computational saliency model, i.e., deep spatial contextual long-term recurrent convolutional network (DSCLRCN) to predict where people looks in natural scenes. DSCLRCN first automatically learns saliency related local feat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1507.01422 شماره
صفحات -
تاریخ انتشار 2015